803 research outputs found

    Random l-colourable structures with a pregeometry

    Full text link
    We study finite ll-colourable structures with an underlying pregeometry. The probability measure that is used corresponds to a process of generating such structures (with a given underlying pregeometry) by which colours are first randomly assigned to all 1-dimensional subspaces and then relationships are assigned in such a way that the colouring conditions are satisfied but apart from this in a random way. We can then ask what the probability is that the resulting structure, where we now forget the specific colouring of the generating process, has a given property. With this measure we get the following results: 1. A zero-one law. 2. The set of sentences with asymptotic probability 1 has an explicit axiomatisation which is presented. 3. There is a formula ξ(x,y)\xi(x,y) (not directly speaking about colours) such that, with asymptotic probability 1, the relation "there is an ll-colouring which assigns the same colour to xx and yy" is defined by ξ(x,y)\xi(x,y). 4. With asymptotic probability 1, an ll-colourable structure has a unique ll-colouring (up to permutation of the colours).Comment: 35 page

    Regular subspaces of a quaternionic Hilbert space from quaternionic Hermite polynomials and associated coherent states

    Full text link
    We define quaternionic Hermite polynomials by analogy with two families of complex Hermite polynomials. As in the complex case, these polynomials consatitute orthogonal families of vectors in ambient quaternionic L2L^2-spaces. Using these polynomials, we then define regular and anti-regular subspaces of these L2L^2-spaces, the associated reproducing kernels and the ensuing quaternionic coherent states

    Wakeful rest alleviates interference-based forgetting

    Get PDF
    Retroactive interference (RI)—the disruptive influence of events occurring after the formation of a new memory—is one of the primary causes of forgetting. Placing individuals within an environment that postpones interference should, therefore, greatly reduce the likelihood of information being lost from memory. For example, a short period of wakeful rest should diminish interference-based forgetting. To test this hypothesis, participants took part in a foreign language learning activity and were shown English translations of 20 Icelandic words for immediate recall. Half of the participants were then given an 8-min rest before completing a similar or dissimilar interfering distractor task. The other half did not receive a rest until after the distractor task, at which point interference had already taken place. All participants were then asked to translate the Icelandic words for a second time. Results revealed that retention was significantly worse at the second recall test, but being allowed a brief rest before completing the distractor task helped reduce the amount of forgetting. Taking a short, passive break can shield new memories from RI and alleviate forgetting.ERAS Scheme, University of Wolverhampto

    Metal-to-insulator transition and magnetic ordering in CaRu_{1-x}Cu_xO_3

    Full text link
    CaRuO_3 is perovskite with an orthorhombic distortion and is believed to be close to magnetic ordering. Magnetic studies of single crystal and polycrystalline CaRu_{1-x}Cu_xO_3 (0\le x \le 15 at.%Cu) reveal that spin-glass-like transition develops for x\le 7 at.%Cu and obtained value for effective magnetic moment p_{eff}=3.55 mu_B for x=5 at.% Cu, single crystal, indicates presence of Ru^{5+}. At higher Cu concentrations more complex magnetic behaviors are observed. Electrical resistivity measured on polycrystalline samples shows metal-to-insulator transition (MIT) at 51 K for only 2 at.% Cu. Charge compensation, which is assumed to be present upon Cu^{2+/3+} substitution, induces appearance of Ru^{5+} and/or creation of oxygen vacancies in crystal structure. Since the observed changes in physical properties are completely attributable to the charge compensation, they cannot be related to behaviors of pure compound where no such mechanism is present. This study provides the criterion for "good" chemical probes for studying Ru-based perovskites.Comment: 12 pages, 7 figure

    Spontaneous symmetry breaking in a two-lane model for bidirectional overtaking traffic

    Full text link
    First we consider a unidirectional flux \omega_bar of vehicles each of which is characterized by its `natural' velocity v drawn from a distribution P(v). The traffic flow is modeled as a collection of straight `world lines' in the time-space plane, with overtaking events represented by a fixed queuing time tau imposed on the overtaking vehicle. This geometrical model exhibits platoon formation and allows, among many other things, for the calculation of the effective average velocity w=\phi(v) of a vehicle of natural velocity v. Secondly, we extend the model to two opposite lanes, A and B. We argue that the queuing time \tau in one lane is determined by the traffic density in the opposite lane. On the basis of reasonable additional assumptions we establish a set of equations that couple the two lanes and can be solved numerically. It appears that above a critical value \omega_bar_c of the control parameter \omega_bar the symmetry between the lanes is spontaneously broken: there is a slow lane where long platoons form behind the slowest vehicles, and a fast lane where overtaking is easy due to the wide spacing between the platoons in the opposite direction. A variant of the model is studied in which the spatial vehicle density \rho_bar rather than the flux \omega_bar is the control parameter. Unequal fluxes \omega_bar_A and \omega_bar_B in the two lanes are also considered. The symmetry breaking phenomenon exhibited by this model, even though no doubt hard to observe in pure form in real-life traffic, nevertheless indicates a tendency of such traffic.Comment: 50 pages, 16 figures; extra references adde

    Frameworks for logically classifying polynomial-time optimisation problems.

    Get PDF
    We show that a logical framework, based around a fragment of existential second-order logic formerly proposed by others so as to capture the class of polynomially-bounded P-optimisation problems, cannot hope to do so, under the assumption that P ≠ NP. We do this by exhibiting polynomially-bounded maximisation and minimisation problems that can be expressed in the framework but whose decision versions are NP-complete. We propose an alternative logical framework, based around inflationary fixed-point logic, and show that we can capture the above classes of optimisation problems. We use the inductive depth of an inflationary fixed-point as a means to describe the objective functions of the instances of our optimisation problems

    Adding an Abstraction Barrier to ZF Set Theory

    Get PDF
    Much mathematical writing exists that is, explicitly or implicitly, based on set theory, often Zermelo-Fraenkel set theory (ZF) or one of its variants. In ZF, the domain of discourse contains only sets, and hence every mathematical object must be a set. Consequently, in ZF, with the usual encoding of an ordered pair a,b{\langle a, b\rangle}, formulas like {a}a,b{\{a\} \in \langle a, b \rangle} have truth values, and operations like P(a,b){\mathcal P (\langle a, b\rangle)} have results that are sets. Such 'accidental theorems' do not match how people think about the mathematics and also cause practical difficulties when using set theory in machine-assisted theorem proving. In contrast, in a number of proof assistants, mathematical objects and concepts can be built of type-theoretic stuff so that many mathematical objects can be, in essence, terms of an extended typed λ{\lambda}-calculus. However, dilemmas and frustration arise when formalizing mathematics in type theory. Motivated by problems of formalizing mathematics with (1) purely set-theoretic and (2) type-theoretic approaches, we explore an option with much of the flexibility of set theory and some of the useful features of type theory. We present ZFP: a modification of ZF that has ordered pairs as primitive, non-set objects. ZFP has a more natural and abstract axiomatic definition of ordered pairs free of any notion of representation. This paper presents axioms for ZFP, and a proof in ZF (machine-checked in Isabelle/ZF) of the existence of a model for ZFP, which implies that ZFP is consistent if ZF is. We discuss the approach used to add this abstraction barrier to ZF

    On the computation of zone and double zone diagrams

    Full text link
    Classical objects in computational geometry are defined by explicit relations. Several years ago the pioneering works of T. Asano, J. Matousek and T. Tokuyama introduced "implicit computational geometry", in which the geometric objects are defined by implicit relations involving sets. An important member in this family is called "a zone diagram". The implicit nature of zone diagrams implies, as already observed in the original works, that their computation is a challenging task. In a continuous setting this task has been addressed (briefly) only by these authors in the Euclidean plane with point sites. We discuss the possibility to compute zone diagrams in a wide class of spaces and also shed new light on their computation in the original setting. The class of spaces, which is introduced here, includes, in particular, Euclidean spheres and finite dimensional strictly convex normed spaces. Sites of a general form are allowed and it is shown that a generalization of the iterative method suggested by Asano, Matousek and Tokuyama converges to a double zone diagram, another implicit geometric object whose existence is known in general. Occasionally a zone diagram can be obtained from this procedure. The actual (approximate) computation of the iterations is based on a simple algorithm which enables the approximate computation of Voronoi diagrams in a general setting. Our analysis also yields a few byproducts of independent interest, such as certain topological properties of Voronoi cells (e.g., that in the considered setting their boundaries cannot be "fat").Comment: Very slight improvements (mainly correction of a few typos); add DOI; Ref [51] points to a freely available computer application which implements the algorithms; to appear in Discrete & Computational Geometry (available online

    Pattern logics and auxiliary relations

    Get PDF
    A common theme in the study of logics over finite structures is adding auxiliary predicates to enhance expressiveness and convey additional information. Examples include adding an order or arith-metic for capturing complexity classes, or the power of real-life declarative languages. A recent trend is to add a data-value com-parison relation to words, trees, and graphs, for capturing modern data models such as XML and graph databases. Such additions often result in the loss of good properties of the underlying logic. Our goal is to show that such a loss can be avoided if we use pattern-based logics, standard in XML and graph data querying. The essence of such logics is that auxiliary relations are tested locally with respect to other relations in the structure. These logics are shown to admit strong versions of Hanf and Gaif-man locality theorems, which are used to prove a homomorphism preservation theorem, and a decidability result for the satisfiability problem. We discuss applications of these results to pattern logics over data forests, and consequently to querying XML data

    Trees over Infinite Structures and Path Logics with Synchronization

    Full text link
    We provide decidability and undecidability results on the model-checking problem for infinite tree structures. These tree structures are built from sequences of elements of infinite relational structures. More precisely, we deal with the tree iteration of a relational structure M in the sense of Shelah-Stupp. In contrast to classical results where model-checking is shown decidable for MSO-logic, we show decidability of the tree model-checking problem for logics that allow only path quantifiers and chain quantifiers (where chains are subsets of paths), as they appear in branching time logics; however, at the same time the tree is enriched by the equal-level relation (which holds between vertices u, v if they are on the same tree level). We separate cleanly the tree logic from the logic used for expressing properties of the underlying structure M. We illustrate the scope of the decidability results by showing that two slight extensions of the framework lead to undecidability. In particular, this applies to the (stronger) tree iteration in the sense of Muchnik-Walukiewicz.Comment: In Proceedings INFINITY 2011, arXiv:1111.267
    corecore